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Clinical utility of next-generation sequencing in neurodevelopmental 
disorders: non-syndromic intellectual disability as a model
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ABSTRACT

Intellectual disability (ID) refers to a diverse group of disorders with marked heterogeneity in both clinical presentation and genetic etiology. Some 
cases of ID are associated with distinctive clinical findings that can lead to specific clinical and molecular diagnoses. However, sporadic cases of ID 
also occur in which the molecular pathogenesis cannot be identified via clinical diagnosis, and the genetic etiology is often unknown. New genomic 
technologies such as whole-exome sequencing, in which selective sequencing of all protein-coding genomic regions is performed, have proved to be 
the most efficient and cost-effective approach for identifying disease-causing variants in neurodevelopmental disorders, even in small nuclear families. 
Successful gene discovery efforts will lead to an improved understanding of the cellular and molecular mechanisms underpinning cases of individuals 
diagnosed with neurodevelopmental disorders, will inform screening programs and will promote the development of novel and more effective 
pharmacotherapies of personalized approaches to medical management.
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Nörogelişimsel hastalıklarda yeni nesil dizilemenin klinik kullanımı: 
Model olarak sendromik olmayan zeka geriliği

ÖZ

Zeka geriliği hem klinik hem de genetik etyoloji olarak çeşitlilik gösteren geniş bir hastalık grubunu içerir. Zeka geriliği olan bazı hastalar spesifik 
klinik ve moleküler tanı konulmasına yardımcı olabilecek hastalığa özgü klinik bulgular gösterir. Bu tür özel klinik bulgular ile birlikte seyretmeyen 
zeka geriliğinde ise moleküler bozukluk klinik tanı ile ayırt edilemez ve genetik etyoloji sıklıkla bilinmemektedir. Tüm ekzom dizileme gibi genomun 
protein kodlayan tüm bölgelerinin dizilenmesini sağlayan yeni nesil genomik teknolojiler, nörogelişimsel hastalıklarda, çekirdek ailelerde bile hastalık 
nedeni olan mutasyonların bulunmasında en verimli ve uygun maliyetli yöntem olduklarını kanıtlamışlardır. Başarılı gen keşfi çalışmaları nörogelişimsel 
hastalıklı bireylerde altta yatan hücresel ve moleküler mekanizmaların anlaşılmasına yardımcı olacak, tarama programlarına bilgi aktaracak ve hastaların 
tıbbi bakımlarında hastaya özgü yeni ve daha etkili ilaç tedavilerine olanak sağlayacaktır.
Anahtar sözcükler: Zeka geriliği; yeni nesil dizileme; yeni gen tespiti.

Intellectual developmental disorder or intellectual 
disability (ID) is a neurodevelopmental disorder 
that is defined as an overall intelligence quotient 
of lower than 70, is associated with functional 
deficits in adaptive behavior, social skills and 
communication, and has an onset age of 18 years 
or younger.[1] Although, ID affects 1-3% of the 
general population.[2,3] and represents one of 
the main reasons for referral in clinical genetic 
practices, it has not received as much public 
attention as other common neurodevelopmental 

diseases such as autism.[4] Intellectual disability 
can be caused by environmental and/or genetic 
factors.[5-9] Beyond the financial challenges, 
caring for a dependent with ID can have 
substantial social and emotional effects on a 
family and society.[10-13] Knowledge regarding the 
genetic cause of ID allows for the anticipation 
and treatment of associated clinical symptoms, 
provides information on prognosis, and prevents 
further superfluous and often costly testing. 
Additionally, it allows for the identification of 



53Clinical utility of next-generation sequencing in neurodevelopmental disorders

specific treatment options or dietary guidelines 
and supports the testing of additional family 
members to determine genotyping status so that 
reproductive counseling may be obtained.

Unfortunately, the genetic cause of most 
cases of ID remains unknown.[14] Genetic causes 
of ID are thought to be present in 15–50% 
of cases,[15-20] although this number increases 
proportionally with severity.[2,21-24] Most 
severe forms of ID are due to chromosomal 
abnormalities or defects in specific genes. It has 
been shown that approximately 15% of ID cases 
are caused by visible cytogenetic anomalies 
(aneuploidies, gross deletions, inversions and 
rearrangements),[25] and ~15-20% are due to 
submicroscopic aberrations and pathogenic 
copy number variants.[25-32] X-linked forms are 
estimated to account for only 5-10% of ID 
cases,[33] which means that the vast majority of 
the underlying genetic defects remain elusive 
and are likely to be autosomal.[22,25] In total, 
approximately 2,500 genes are estimated to 
be involved in monogenic causes of ID.[34] The 
latest observations based on a parent-proband 
trio analysis to identify de novo changes in 
known or candidate genes for ID suggested that 
a significant portion of sporadic cases may be 
due to dominant de novo mutations.[35-39] More 
recently, Hamdan et al.[40] suggested that de 
novo mutations are the predominant cause of 
moderate or severe ID, on the basis of results 
from 41 cases of high-depth trio-based exome 
sequencing in patients with ID.

While autosomal recessive intellectual 
disability (AR-ID) is less prevalent, estimates of 
the contribution of recessive mutations to ID 
are as high as 25%, and the majority have been 
characterized in consanguineous families.[41] The 
marriage of second cousins or closer relatives, 
defined as consanguineous marriage,[42] is still 
common in many parts of the world, particularly 
in the Middle East and Asia.[43] In Turkey, the 
prevalence of consanguineous marriages has been 
quite high and stable in the last three decades 
at approximately 20-25% (ranges from 11.5% 
to 46%).[44-46] The children of consanguineous 
individuals will have more homozygous DNA 
than the offspring of an outbred marriage. This 
leads to an increased likelihood of rare, recessive, 
disease-causing variants being inherited from 
both parents. On average, first cousins have 

an additional risk of 1.7-2.8% of having a child 
with an autosomal recessive disorder.[47] The 
frequency of autosomal recessive, non-specific ID 
is unknown. The broad genetic heterogeneity of 
AR-ID, which usually non-syndromic nature, and 
the few reported cases (most genes were detected 
in single kindreds) make it difficult to determine 
consistent genotype-phenotype correlations.

The traditional genetic testing approach for 
AR-ID is usually successful in identifying new 
genes.[48-57] This approach typically starts with 
targeted disease testing for mutations in known 
genes and consists of conventional karyotyping, 
especially for mosaic detection or patients with a 
specific medical and familial history, exclusion of 
fragile-X syndrome and array-based comparative 
genomic hybridization testing, followed by 
genome-wide homozygosity mapping in large 
consanguineous families and linkage analysis and 
then sequencing of genes within suspect intervals. 
However, positional mapping strategies (i.e., linkage 
analysis and homozygosity mapping) have several 
important limitations, for example, disease-related 
mutations could reside in regions of homozygosity 
that are too small to detect via traditional methods, 
particularly in probands from third cousin matings 
or often identify very large regions that contain 
hundreds of genes; and selecting relevant candidate 
genes can be problematic.

Whole-exome sequencing is a cost-effective 
and fast strategy for comprehensive mutation 
screening and disease-gene identification in the 
coding portion of the human genome.[58-60] Because 
it is estimated that 80% of the variants that cause 
Mendelian disease are located within the exome, 
and approximately 15% of suspected Mendelian 
diseases have a recessive mode of inheritance, 
the introduction of next-generation sequencing 
techniques has led to the discovery of a rapidly 
increasing number of autosomal recessive non-
syndromic ID causative genes. This situation makes 
whole-exome sequencing an attractive method 
for investigating rare genetic variants with large 
effects.[61,62] In addition to mutations in TECR,[63] 
MAN1B1,[64,65] and ST3GAL3,[66] 50 putative novel 
autosomal recessive non-syndromic ID causative 
genes have been reported by Najmabadi et al.[65] 
However, even after next generation sequencing 
(NGS) testing, many patients still do not have 
a molecular diagnosis. For example, two large 
studies on the genetics of ID using whole-exome 
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sequencing provided a yield of 16-55%.[38,67] There 
may be several explanations for this finding, 
such as technical limitations including insufficient 
coverage; trinucleotide repeat expansions or low-
level mosaicism, which might be responsible 
for the clinical symptoms; etiologic mutations 
that may be located in noncoding regions; or 
large genomic events may occur. Alternatively, 
whole-genome sequencing is considered to be 
the most comprehensive form of genetic testing 
currently available.[68] More recently, Glissen et 
al.[69] performed whole-genome sequencing on 
50 patients with severe ID and their unaffected 
parents with an average genome-wide coverage 
of 80-fold, and a diagnosis was made in 42% of 
the patients. Whole genome sequencing is also 
not without its limitations, such as the fact that 

not all areas of the genome may be captured 
and analyzed, the control datasets for non-coding 
variants are less mature and still expensive than 
the whole-exome sequencing.

Numerous challenges are inherent in the 
identification of rare and common variants that 
have a role in IDs. One such challenge is the 
interpretation of pathogenic variants, including 
those derived from well-known disease-causing 
genes.[70] Further functional testing should be 
performed on novel gene variants with the aim 
of enhancing our understanding of the molecular 
basis of the disease.[60,71-77] Increased knowledge of 
the genetic and cellular mechanisms that cause ID 
could lead to the development of novel treatment 
options (Figure 1).

Figure 1. Novel gene identification steps in a patient with intellectual disability. A systemic approach is used to identify 
candidate variants and determine their pathogenicity.
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Regardless of advances in molecular 
technology, the currently identified mutated genes 
are responsible for only a small fraction of non-
syndromic ID cases and the remaining disease-
causing genes have not yet been identified.
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