The analysis of surface saccharide profiles through fluorescein-labelled lectins in a rat pancreatic tissue with established metabolic syndrome model
Özet
Glycans, which are generally referred as oligosaccharides and polysaccharides, are structures that are present on all cellular surfaces with proteins and lipids being attached to their basic chain structures. Many studies in the field of glycobiology have identified the various and complicated biological roles of these glycans which make them perfect molecules to use in labelling and selecting body cells specifically. This study aims at analyzing the modifications in saccharide units of glycans on a cell membrane surfaces of the pancreatic tissue of rats to which normal and metabolic syndrome (MetS) are established. To this end, a MetS model was created through a high fructose diet in Spraque Dawley breed of rats and the pancreatic tissue sections of the group with MetS and control group animals were evaluated comparatively. The targeted saccharide units were examined with Fluorescent Microscope by using two different Fluorescein (FITC) labelled lectins, namely Maackia amurensis-1 lectin [FITC-(MAL-I)] and the Wheat Germ Agglutinin (FITC-WGA). It was observed that FITC-MAL-1-labelled Gal beta 4GlcNAc units did not change much due to high-fructose diet. On the other hand, more GlcNAc, Neu5Ac and beta-GlcNAc units which are labelled with FITC-WGA lectin increase in numbers in pancreatic sections of high fructose diet, compared to control group. Thus, a rapid and specific labelling method, which can identify surface saccharide sequences specifically, was developed. The method can be used in early diagnosis and/or treatment for metabolic diseases.