Perirhinal cortical kindling in rats with genetic absence epilepsy
Künye
Akman O, Karson A, Aker RG, Ates N, Onat FY. Perirhinal cortical kindling in rats with genetic absence epilepsy. Neuroscience Letters. 2010; 479(1): 74-78. doi:10.1016/j.neulet.2010.05.034Özet
Two genetic models of absence epilepsy, GAERS and WAG/Rij rat strains, are resistant to progression of
partial seizures induced by amygdaloid or hippocampal kindling. Perirhinal cortex is one of the crucial
areas for the secondary generalization of partial seizures. Therefore we focused on perirhinal cortical
kindling in both epileptic rat strains and examined whether the resistance to limbic epilepsy is restricted
to the amygdala and hippocampus or whether it can also occur with perirhinal cortical kindling. The
mean afterdischarge (AD) thresholds were significantly higher in WAG/Rij and GAERS compared to the
Wistar rats. Analysis of the rate of perirhinal cortical kindling for the 3 strains indicated highly significant
differences. The mean number of stimulations for the development of the first stage 2, 3, 4 or 5 seizures
was significantly higher in WAG/Rij and GAERS groups than in Wistar rats. Further, the cumulative total
duration and number of SWDs increased during the first epoch of the post-stimulation period at the
first stage 2 and 4/5 seizures in the WAG/Rij and GAERS rats compared to the pre-stimulation period. The
higher AD threshold and delays to all stages of kindling in WAG/Rij and GAERS indicate that the perirhinal
cortex is a part of the circuits involved in the kindling resistance in genetic models of absence epilepsy.