Immunosuppressant Tacrolimus Treatment Delays Acute Seizure Occurrence, Reduces Elevated Oxidative Stress, and Reverses PGF2? Burst in the Brain of PTZ-Treated Rats
Abstract
It is still an urgent need to find alternative and effective therapies to combat epileptic seizures. Tacrolimus as a potent immunosuppressant and calcineurin inhibitor is emerging as promising drug to suppress seizures. However, there are few reports applying tacrolimus to epilepsy and providing data for its antiseizure properties. In this study, we investigated the antiseizure effects of 5 and 10 mg/kg doses of tacrolimus treatment priorly to pentylenetetrazol (PTZ) induction of seizures in rats. As an experimental design, we establish two independent rat groups where we observe convulsive seizures following 70 mg/kg PTZ and sub-convulsive seizures detected by electroencephalography (EEG) following 35 mg/kg PTZ. Thereafter, we proceed with biochemical analyses of the brain including assessment of malondialdehyde level as an indicator of lipid peroxidation and detection of superoxide dismutase (SOD) enzyme activity and PGF2 alpha. Tacrolimus pre-treatment dose-dependently resulted in lesser seizure severity according to Racine's scale, delayed start-up latency of the first myoclonic jerk and attenuated the spike percentages detected by EEG in seizure-induced rats. However, only the higher dose of tacrolimus was effective to restore lipid peroxidation. An increase in SOD activity was observed in the PTZ group, mediated by seizure activity per se, however, it was greater in the groups that received treatment with 5 and 10 mg/kg of Tacrolimus. PGF2 alpha bursts following PTZ induction of seizures were reversed by tacrolimus pre-treatment in a dose-dependent manner as well. We report that the well-known immunosuppressant tacrolimus is a promising agent to suppress seizures. Comparative studies are necessary to determine the possible utilization of tacrolimus in clinical cases.