Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorArslantas, Mustafa Kemal
dc.contributor.authorAsuroglu, Tunc
dc.contributor.authorArslantas, Reyhan
dc.contributor.authorPashazade, Emin
dc.contributor.authorDincer, Pelin Corman
dc.contributor.authorAltun, Gulbin Tore
dc.contributor.authorKararmaz, Alper
dc.date.accessioned2025-01-12T18:54:57Z
dc.date.available2025-01-12T18:54:57Z
dc.date.issued2024
dc.identifier.isbn978-3-031-59090-0; 978-3-031-59091-7
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.urihttps://doi.org/10.1007/978-3-031-59091-7_1
dc.identifier.urihttp://hdl.handle.net/11446/5022
dc.description1st Nordic Conference on Digital Health and Wireless Solutions (NCDHWS) -- MAY 07-08, 2024 -- Oulu, FINLANDen_US
dc.description.abstractSerum lactate levels are considered a biomarker of tissue hypoxia. In sepsis or septic shock patients, as suggested by The Surviving Sepsis Campaign, early lactate clearance-directed therapy is associated with decreased mortality; thus, serum lactate levels should be assessed. Monitoring a patient's vital parameters and repetitive blood analysis may have deleterious effects on the patient and also bring an economic burden. Machine learning and trend analysis are gaining importance to overcome these issues. In this context, we aimed to investigate if a machine learning approach can predict lactate trends from non-invasive parameters of patients with sepsis. This retrospective study analyzed adult sepsis patients in the Medical Information Mart for Intensive Care IV(MIMIC-IV) dataset. Inclusion criteria were two or more lactate tests within 6 h of diagnosis, an ICU stay of at least 24 h, and a change of >= 1 mmol/liter in lactate level. Naive Bayes, J48 Decision Tree, Logistic Regression, Random Forest, and Logistic Model Tree (LMT) classifiers were evaluated for lactate trend prediction. LMT algorithm outperformed other classifiers (AUC = 0.803; AUPRC = 0.921). J48 decision tree performed worse than the other methods when predicting constant trend. LMT algorithm with four features (heart rate, oxygen saturation, initial lactate, and time interval variables) achieved 0.80 in terms of AUC (AUPRC = 0.921). We can say that machine learning models that employ logistic regression architectures, i.e., LMT algorithm achieved good results in lactate trend prediction tasks, and it can be effectively used to assess the state of the patient, whether it is stable or improving.en_US
dc.description.sponsorshipDigital Hlth,Univ Oulu, 6G Enabled Sustainable Solut Res Programsen_US
dc.language.isoengen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofDigital Health and Wireless Solutions, Pt Ii, Ncdhws 2024en_US
dc.identifier.doi10.1007/978-3-031-59091-7_1
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSepsisen_US
dc.subjectSerum Lactate Valueen_US
dc.subjectMachine Learningen_US
dc.subjectIntensive Care Uniten_US
dc.subjectDefinitionsen_US
dc.subjectGuidelinesen_US
dc.subjectMortalityen_US
dc.titleUsing Machine Learning Methods to Predict the Lactate Trend of Sepsis Patients in the ICUen_US
dc.typeconferenceObjecten_US
dc.departmentDBÜen_US
dc.identifier.volume2084en_US
dc.identifier.startpage3en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.department-temp[Arslantas, Mustafa Kemal] Demiroglu Bilim Univ, Dept Anesthesiol & Reanimat, Fac Med, Istanbul, Turkiye; [Asuroglu, Tunc] VTT Tech Res Ctr Finland, Tampere, Finland; [Arslantas, Reyhan] Taksim Training & Res Hosp, Clin Anesthesiol & Reanimat, Istanbul, Turkiye; [Pashazade, Emin; Altun, Gulbin Tore] Kadikoy Florence Nightingale Hosp, Clin Anesthesiol & Reanimat, Istanbul, Turkiye; [Dincer, Pelin Corman] Marmara Univ, Dept Oral & Maxillofacial Surg, Fac Dent, Istanbul, Turkiye; [Kararmaz, Alper] Marmara Univ, Sch Med, Dept Anesthesiol & Reanimat, Istanbul, Turkiyeen_US
dc.authoridArslantas, Reyhan/0000-0001-5597-9242
dc.authoridKararmaz, Alper/0000-0002-4705-1652
dc.authoridArslantas, Mustafa Kemal/0000-0003-2838-9890
dc.authoridPashazade, Emin/0000-0001-7304-0714
dc.authoridAsuroglu, Tunc/0000-0003-4153-0764
dc.identifier.scopus2-s2.0-85193519475en_US
dc.identifier.wosWOS:001265181000001en_US
dc.authorwosidArslantas, Reyhan/AAG-3175-2020
dc.authorwosidARSLANTAS, MUSTAFA/AAG-5054-2019
dc.authorwosidKararmaz, Alper/B-3615-2014
dc.authorwosidAsuroglu, Tunc/ITV-2441-2023
dc.authorscopusid9241026100
dc.authorscopusid56780249800
dc.authorscopusid55217698800
dc.authorscopusid57874347600
dc.authorscopusid55386146400
dc.authorscopusid24597727700
dc.authorscopusid56004106700


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster